岩石形成

发掘

目前在中国发现的最古老岩石是冀东地区的花岗片麻岩,其中包体的岩石年龄约为35亿年。澳大利亚西部Warrawoona群中的微化石在形态结构上比较完整。早期叠层石是蓝藻建造的,叠层石是蓝藻存在的指示。如果35亿年前就已经出现蓝藻,则说明释氧的光合作用早就开始了,这便引出一个问题:为什么直到20亿年前大气圈才积累自由氧呢?从35亿年前到20亿年前中间相隔15亿年之久,为什么氧的积累如此缓慢?对此当然有不同的解释。最古老生命存在的间接证据中较重要的是格陵兰西部条带状铁建造(BIF)和轻碳同位素。如果证据成立,则由此可推断在38亿年前的地球上已经出现进行释氧光合作用的微生物,即类似蓝藻的生物。根据Cloud的解释,BIF是由光和微生物周期性地释氧而引起亚铁氧化为高价铁沉积下来的。轻碳同位素也是光合作用的间接证据。但反对的意见认为,BIF形成所需的氧可以通过大气中的水分子的光分解来提供,而轻碳同位素可能来自碳酸盐的热分解。

原因

十八世纪末岩石学从矿物学中脱胎出来而发展成一门独立的学科。在岩石学发展的初期,主要研究的是火成岩,到了十九世纪中叶才开始系统地研究变质岩,而沉积岩直到二十世纪初才引起人们的注意。科一种岩石都有其生成以及后期保存,变化的特定环境。以下分别进行讨论。1、花岗岩经天文地质学的研究,在地球以外的星球上还未发现有花岗岩。所以说,花岗岩是地球上物理、化学及生物作用的独特产物。地球形成约60亿年;在42.5亿前后,形成了大气圈和水圈;在40亿年前后,出现了生命,进而形成了生物圈。1.1、在40公里左右的深度,巨大的压力和高温使得岩石发生塑性变形及塑性状态下的矿物重结晶,在这种状态下,重结晶不充分,所以晶体较小并且混浊。矿物及晶体在巨大的垂直填压力下,定向排列,形成片麻理,这种岩石叫做片麻岩。由沉积岩直接变质而成,属负变质岩。1.2、当片麻岩在地下深处遭受水平方向的挤压时,在层理和片麻理间产生揉皱构造成并由此产生虚脱构造(即在层间发生由于扭动而产生的弯曲的凸镜体空间)。1.3、如果硅铝质的沉积岩继续下沉达60公里左右的深度,压力和温度已使岩石熔化为花岗岩浆,花岗岩浆比重较小(2.7左右),浮在地幔中较重的铁浆如果快速的上升冷却,来不及充分的结晶及聚晶,则形成:石英为独立的细到中晶体,外形近圆形;长石为微到细晶。叫做细晶岩,一般为浅色。1.4、花岗岩浆如果缓慢上升、冷却,矿物则可以从容的结晶、聚晶,也就是,相同矿物单晶体在液态里有往一起聚合的趋势。这样就形成中到大斑晶的花岗岩。我国和外国的花岗岩品种大多属此类。1.5、花岗岩浆在上升冷却过程中,已经结晶,但还未固化。这时受到挤压,晶体被压扁、拉长,晶体定向排列,形成花岗片麻岩,如广东海浪花,福建越南白、新疆冰川白等。1.6、花岗岩浆上升、冷却过程中,已形成一些晶体,这时又复下沉、被加热,在已形成的晶体(或叫晶核)周围再次结晶,形成围绕晶核黄素的结晶环,也叫晶体增生,并与初始晶核黄素有着明显的界线,如:芬兰的啡钻,山东莱州珍珠红等。晶体较大,近圆瑚,具有特色。2、岩石的蚀变作用当岩浆上升、冷却成岩后,上升至地表以下10公里左右的深度时,地下水可以通过岩石周围的裂隙以及晶体颗粒的孔隙对岩石进行蚀变作用。蚀变作用可使长石向高岭石转化,辉石和角闪石向缘泥石转化,降低石材物理性能,使得吸水率提高,光泽度降低。但,轻微的蚀变作用,对岩石的物性影响不大,但却改变了岩石的颜色,成就了一些美丽的石材品种。2.1、细晶岩遭受蚀变后,长石转化为高岭石,其物性受到影响,如:新疆的天山兰、江西的白珍珠。2.2、辉长岩脉遭蚀变后,辉石和角闪石转化为绿泥石,将黑色的岩石转变为绿色的岩石,如河北灵寿的万年青、河南淇县森林绿等。虽然岩石物性受到影响,但是美丽的颜色却受人喜爱,不失为高档石材。2.3、正长岩遭受蚀变后,原来灰色、兰色、绿色的晶体由于铁的电子价降低,颜色变浅为棕色、黄色,晶体的边缘转变为高岭石,略浅于晶体中部,使得板面的花色具立体感,如:河北承德金珍珠,国外的巴西啡麻,巴西啡珍珠等,均为石材中的上品。3、岩石的风化作用当岩石倮圳在地表后,即遭受到水、汽、温度的风化作用,其作用深度1-15米不等。风化作用使得大部分石材矿床受到破坏,磨光板面上可以看到鸡爪纹、锈玟王、砂眼,而且不易磨光,但是,风化作用也造就了一些独特的品种,如:福建锈石,用于北京人民大会堂外墙山东锈石,以及江西、广东、广西所产的黄麻等,这类矿床属于地表风化型矿床,一般顺东势厚度10米左右。较易开采,而且价值较高。国外的黄麻系列多属此类型,其特点是:影响岩石变色的物质(铁)来源于地表,由地表水淋滤造成的。

更多相关

罗犀子形成罗犀子形成
庞明形成庞明形成
黄涛形成黄涛形成
李慧颖形成李慧颖形成
罗树淇形成罗树淇形成